In short, our experiments suggest that yes, on average, rotation forest is better than the most common alternatives when all the attributes are real-valued. Rotation forest is a tree based ensemble that performs transforms on subsets of attributes prior to constructing each tree. We present an empirical comparison of classifiers for problems with only real-valued features. We evaluate classifiers from three families of algorithms: support vector machines; tree-based ensembles; and neural networks tuned with a large grid search. We compare classifiers on unseen data based on the quality of the decision rule (using classification error) the ability to rank cases (area under the receiver operating characteristic) and the probability estimates (using negative log likelihood). We conclude that, in answer to the question posed in the title, yes, rotation forest is significantly more accurate on average than competing techniques when compared on three distinct sets of datasets. Further, we assess the impact of the design features of rotation forest through an ablative study that transforms random forest into rotation forest. We identify the major limitation of rotation forest as its scalability, particularly in number of attributes. To overcome this problem we develop a model to predict the train time of the algorithm and hence propose a contract version of rotation forest where a run time cap is imposed {\em a priori}. We demonstrate that on large problems rotation forest can be made an order of magnitude faster without significant loss of accuracy. We also show that there is no real benefit (on average) from tuning rotation forest. We maintain that without any domain knowledge to indicate an algorithm preference, rotation forest should be the default algorithm of choice for problems with continuous attributes.


翻译:简言之,我们的实验表明,平均而言,轮用森林比所有属性都真正估价时最常见的替代物更好。轮用森林是一种基于树的混合组合,在建造每棵树之前对属性子子子进行变换。我们用经验比较分类者对只有实际价值特征的问题。我们评估了三个算法系列的分类者:支持矢量机器;植树的集合;和与大规模网格搜索相调的神经网络。我们根据决定规则的质量(使用分类错误)比较了隐蔽数据的分类者,对案例进行排序(接受者操作特性下的区域)和概率估计(使用负日志可能性)。我们的结论是,在回答标题中提出的问题时,旋转森林平均比竞争技术要准确得多。我们通过将随机森林转化为旋转森林的校正研究来评估旋转森林的设计特征的影响。我们确定旋转森林的主要限制是其可缩放性,特别是在属性数量上。我们的结论是,为了克服这个在标题中所提出的问题,我们不使用一个连续的森林变换森林的模型,我们也可以预测一个巨大的时间模型。我们提出一个长期变换森林的模型。我们用来预测一个大的森林的模型。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员