This paper proposes an interpretable neural network-based non-proportional odds model (N$^3$POM) for ordinal regression, where the response variable can take not only discrete but also continuous values, and the regression coefficients vary depending on the predicting ordinal response. In contrast to conventional approaches estimating the linear coefficients of regression directly from the discrete response, we train a non-linear neural network that outputs the linear coefficients by taking the response as its input. By virtue of the neural network, N$^3$POM may have flexibility while preserving the interpretability of the conventional ordinal regression. We show a sufficient condition so that the predicted conditional cumulative probability~(CCP) satisfies the monotonicity constraint locally over a user-specified region in the covariate space; we also provide a monotonicity-preserving stochastic (MPS) algorithm for training the neural network adequately.
翻译:本文提出了一种可解释性神经网络的非比例荟萃分析回归模型(N$^3$POM),适用于荟萃分析回归,其中响应变量不仅可以取离散值,还可以取连续值,并且回归系数取决于预测的有序响应。与直接从离散响应估计线性系数的传统方法不同,我们训练了一个非线性神经网络,通过将响应作为其输入,输出线性系数。借助神经网络的优势,N$^3$POM可以在保持传统有序回归的可解释性的同时具有灵活性。我们展示了一个充分条件,使得在协变量空间中的用户指定区域内,预测的条件累计概率(CCP)局部满足单调性约束;我们还提供了一个保持单调性的随机(MPS)算法,以适当地训练神经网络。