We investigate the computational complexity of finding temporally disjoint paths or walks in temporal graphs. There, the edge set changes over discrete time steps and a temporal path (resp. walk) uses edges that appear at monotonically increasing time steps. Two paths (or walks) are temporally disjoint if they never use the same vertex at the same time; otherwise, they interfere. This reflects applications in robotics, traffic routing, or finding safe pathways in dynamically changing networks. On the one extreme, we show that on general graphs the problem is computationally hard. The "walk version" is W[1]-hard when parameterized by the number of routes. However, it is polynomial-time solvable for any constant number of walks. The "path version" remains NP-hard even if we want to find only two temporally disjoint paths. On the other extreme, restricting the input temporal graph to have a path as underlying graph, quite counterintuitively, we find NP-hardness in general but also identify natural tractable cases.


翻译:我们在时间图中调查寻找时间脱节路径或行走在时间图中的计算复杂性。 在那里, 边缘在离散时间步骤和时间路径上设定了变化( 重复行走), 使用的是单声道增加时间步骤的边缘。 两个路径( 或行走) 如果它们从未同时使用同一个顶点, 则暂时脱节; 否则, 它们会干扰。 这反映了在机器人、 交通路线或动态变化网络中找到安全路径的应用。 在一个极端上, 我们在一般图表中显示问题是在计算上很困难的。 “ 行走版本” 以路径数参数化为参数时是W[ 1] 硬的。 然而, 对任何常态行走数来说, 它都是多音调时间可溶的。 “ 路径” 即使我们只想要找到两个暂时脱节路径, 也仍然很硬。 在另一个极端上, 限制输入的时间图有作为底图的路径, 非常直截然, 我们发现在一般的路径中发现 NP- 硬性, 但也识别自然可移动的案例 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
25+阅读 · 2021年4月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月11日
Arxiv
0+阅读 · 2021年7月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员