For the discretization of the convective term in the Navier-Stokes equations (NSEs), the commonly used convective formulation (CONV) does not preserve the energy if the divergence constraint is only weakly enforced. In this paper, we apply the skew-symmetrization technique in [B. Cockburn, G. Kanschat and D. Sch\"{o}tzau, Math. Comp., 74 (2005), pp. 1067-1095] to conforming finite element methods, which restores energy conservation for CONV. The crucial idea is to replace the discrete advective velocity with its a $H(\operatorname{div})$-conforming divergence-free approximation in CONV. We prove that the modified convective formulation also conserves linear momentum, helicity, 2D enstrophy and total vorticity under some appropriate senses. Its a Picard-type linearization form also conserves them. Under the assumption $\boldsymbol{u}\in L^{2}(0,T;\boldsymbol{W}^{1,\infty}(\Omega)),$ it can be shown that the Gronwall constant does not explicitly depend on the Reynolds number in the error estimates. The long time numerical simulations show that the linearized and modified convective formulation has a similar performance with the EMAC formulation and outperforms the usual skew-symmetric formulation (SKEW).


翻译:对于纳维-斯托克方程式(NSEs)中对流术语的离散化,常用的对流配方(CONV)如果差分限制执行不力,就不会保存能量。在本文中,我们应用了[B. Cockburn, G. Kanschat 和D. Sch\\"{o}tzau, Math. comp. 74(2005), pp. 1067-1095] 的对流化技术,使其符合一定元素方法,恢复了CONV的节能。 关键的想法是用一个 $H(Operatorname{div})$(CONV) 的对离散对流反向速度替换其能量。在CONV中,我们证明修改后的对流相匹配配方也保存了线性动力、外性、外性、2D营养素和整个园艺。 Picard型线性化形式也保存了它们。在假设 $\boldsylsymball{u}(OT;\bold deal demodial demodal demastral demod)上显示了一个不变的公式。

0
下载
关闭预览

相关内容

《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关VIP内容
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员