Wireless backhauling at millimeter-wave frequencies (mmWave) in static scenarios is a well-established practice in cellular networks. However, highly directional and adaptive beamforming in today's mmWave systems have opened new possibilities for self-backhauling. Tapping into this potential, 3GPP has standardized Integrated Access and Backhaul (IAB) allowing the same base station serve both access and backhaul traffic. Although much more cost-effective and flexible, resource allocation and path selection in IAB mmWave networks is a formidable task. To date, prior works have addressed this challenge through a plethora of classic optimization and learning methods, generally optimizing a Key Performance Indicator (KPI) such as throughput, latency, and fairness, and little attention has been paid to the reliability of the KPI. We propose Safehaul, a risk-averse learning-based solution for IAB mmWave networks. In addition to optimizing average performance, Safehaul ensures reliability by minimizing the losses in the tail of the performance distribution. We develop a novel simulator and show via extensive simulations that Safehaul not only reduces the latency by up to 43.2% compared to the benchmarks but also exhibits significantly more reliable performance (e.g., 71.4% less variance in achieved latency).


翻译:在静态情景下,以毫米波频率(mmWave)为静态情景进行无线回放是蜂窝网络中的一项既定做法,然而,今天的毫米Wave系统中的高度定向和适应性波束成型为自我反射开辟了新的可能性。 3GPP利用这一潜力,实现了标准化的“综合接入”和“回路”(IAB),允许同一基地站同时为接入和回路交通服务。虽然在IABmmWave网络中资源分配和选择路径是一项艰巨的任务,但成本效率更高、更灵活得多。迄今为止,先前的工作通过大量经典优化和学习方法应对了这一挑战,通常优化了关键业绩指标(KPI),例如吞吐量、延缓度和公平性,而且很少关注到KPI的可靠性。我们建议为IABmmWave网络提供基于风险的基于学习的解决方案Safehaul。除了优化平均业绩之外,Safhaul确保可靠性,最大限度地减少性能分配尾部的损失。我们开发了一个新的模拟器,并通过广泛的模拟显示性能差异,而不是大幅降低性能比基准。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月10日
Arxiv
17+阅读 · 2021年2月15日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员