3D grasp synthesis generates grasping poses given an input object. Existing works tackle the problem by learning a direct mapping from objects to the distributions of grasping poses. However, because the physical contact is sensitive to small changes in pose, the high-nonlinear mapping between 3D object representation to valid poses is considerably non-smooth, leading to poor generation efficiency and restricted generality. To tackle the challenge, we introduce an intermediate variable for grasp contact areas to constrain the grasp generation; in other words, we factorize the mapping into two sequential stages by assuming that grasping poses are fully constrained given contact maps: 1) we first learn contact map distributions to generate the potential contact maps for grasps; 2) then learn a mapping from the contact maps to the grasping poses. Further, we propose a penetration-aware optimization with the generated contacts as a consistency constraint for grasp refinement. Extensive validations on two public datasets show that our method outperforms state-of-the-art methods regarding grasp generation on various metrics.
翻译:3D 抓取合成产生抓取对象, 配置输入对象 。 现有工作通过学习从对象到握取姿势分布的直接映射来解决问题。 但是, 由于物理接触对表面小变化十分敏感, 3D 对象代表到有效姿势之间的高非线性映射非常不光滑, 导致生成效率低, 并限制通用性 。 为了应对挑战, 我们引入了一个中间变量来抓取接触区域以限制抓取生成; 换句话说, 我们将映射分为两个相继阶段, 假设抓取姿势在联系地图上完全受限 :1 我们首先学习接触地图分布, 以生成潜在接触姿势地图供抓取 ; 2 然后从接触图中学习绘制地图到抓取姿势。 此外, 我们提议对生成的联系人进行渗透- 优化, 以作为拉动性制约抓取效果的制约。 对两个公共数据集的广泛验证显示, 我们的方法比不同指标的捕捉取方式的状态方法要快。