As climate change intensifies extreme weather events, water disasters pose growing threats to global communities, making adaptive reservoir management critical for protecting vulnerable populations and ensuring water security. Modern water resource management faces unprecedented challenges from cascading uncertainties propagating through interconnected reservoir networks. These uncertainties, rooted in physical water transfer losses and environmental variability, make precise control difficult. For example, sending 10 tons downstream may yield only 8-12 tons due to evaporation and seepage. Traditional centralized optimization approaches suffer from exponential computational complexity and cannot effectively handle such real-world uncertainties, while existing multi-agent reinforcement learning (MARL) methods fail to achieve effective coordination under uncertainty. To address these challenges, we present MARLIN, a decentralized reservoir management framework inspired by starling murmurations intelligence. Integrating bio-inspired alignment, separation, and cohesion rules with MARL, MARLIN enables individual reservoirs to make local decisions while achieving emergent global coordination. In addition, a LLM provides real-time reward shaping signals, guiding agents to adapt to environmental changes and human-defined preferences. Experiments on real-world USGS data show that MARLIN improves uncertainty handling by 23\%, cuts computation by 35\%, and accelerates flood response by 68\%, exhibiting super-linear coordination, with complexity scaling 5.4x from 400 to 10,000 nodes. These results demonstrate MARLIN's potential for disaster prevention and protecting communities through intelligent, scalable water resource management.
翻译:暂无翻译