We study the problem of deployment efficient reinforcement learning (RL) with linear function approximation under the \emph{reward-free} exploration setting. This is a well-motivated problem because deploying new policies is costly in real-life RL applications. Under the linear MDP setting with feature dimension $d$ and planning horizon $H$, we propose a new algorithm that collects at most $\widetilde{O}(\frac{d^2H^5}{\epsilon^2})$ trajectories within $H$ deployments to identify $\epsilon$-optimal policy for any (possibly data-dependent) choice of reward functions. To the best of our knowledge, our approach is the first to achieve optimal deployment complexity and optimal $d$ dependence in sample complexity at the same time, even if the reward is known ahead of time. Our novel techniques include an exploration-preserving policy discretization and a generalized G-optimal experiment design, which could be of independent interest. Lastly, we analyze the related problem of regret minimization in low-adaptive RL and provide information-theoretic lower bounds for switching cost and batch complexity.


翻译:我们研究了部署高效增强学习(RL)的问题,在 emph{ reward-fred-fred} 勘探设置下的线性功能近似值(RL) 。 这是一个动机良好的问题,因为采用新政策在实际的RL应用中代价高昂。 在具有地谱层面的线性 MDP 设置和规划地平线$H$(H$) 下,我们建议一种新的算法,最多收集$(全方位){(frac{d}2H%2H%5-hun-hepsilon2}) 美元(H$(美元)的部署范围内的轨迹,以确定任何(可能依赖数据)奖赏功能的选择的美元最佳政策。 根据我们的知识,我们的方法是首先实现最佳的部署复杂性,同时在样本复杂度方面实现最佳的美元依赖度(即使奖励早为人所知 ) 。 我们的新技术包括勘探保留政策离散和通用的G-opylus实验设计,这可能具有独立的兴趣。 最后,我们分析了低调的RL 和低调调成本和低压度变装复杂度的信息。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
177+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
20+阅读 · 2022年11月8日
Arxiv
64+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
177+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员