Age-disaggregated health data is crucial for effective public health planning and monitoring. Monitoring under-five mortality, for example, requires highly detailed age data since the distribution of potential causes of death varies substantially within the first few years of life. Comparative researchers often have to rely on multiple data sources yet, these sources often have ages aggregated at different levels, making it difficult to combine the data into a single, coherent picture. To address this challenge in the context of under-five cause-specific mortality, we propose a Bayesian approach, that calibrates data with different age structures to produce unified and accurate estimates of the standardized age group distributions. We consider age-disaggregated death counts as fully-classified multinomial data and show that by incorporating partially-classified aggregated data, we can construct an improved Bayes estimator of the multinomial parameters under the Kullback-Leibler (KL) loss. We illustrate the method using both synthetic and real data, demonstrating that the proposed method achieves adequate performance in imputing incomplete classification. Finally, we present the results of numerical studies examining the conditions necessary for obtaining improved estimators. These studies provide insights and interpretations that can be used to aid future research and inform guidance for practitioners on appropriate levels of age disaggregation, with the aim of improving the accuracy and reliability of under-five cause-specific mortality estimates.


翻译:以年龄分列的健康数据对有效的公共卫生规划和监测至关重要。例如,监测五岁以下幼儿死亡率需要高度详细的年龄数据,因为潜在死亡原因的分布在生命的头几年里差别很大。比较研究者往往不得不依赖多种数据来源,但这些来源往往在不同层次上都具有年限,因此很难将数据合并成单一、一致的图象。为了应对五岁以下特定原因死亡率方面的挑战,我们建议采用巴耶斯方法,用不同年龄结构校准数据,以得出标准化年龄组分布的统一和准确估计数。我们认为,按年龄分列的死亡数字是完全分类的多位数数据,并表明,通过纳入部分分类的汇总数据,我们可以建立一个更好的海湾估计数字来源,以不同层次的估算值为基础,根据Kullack-Leiber(KL)损失,我们用合成和真实数据来说明方法,表明拟议方法在估算不完全的分类方面取得了适当的业绩。我们介绍了数字研究结果,审查了改进估计数字所需的条件。通过这些研究,我们可以通过纳入部分分类的汇总综合数据,我们就可以建立一个更好的海湾测算方法,并解释未来精确度,以便根据具体年龄进行适当的分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
158+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员