Decision tree looks like a simple computational graph without cycles, where only the leaf nodes specify the output values and the non-terminals specify their tests or computation. From the numerical perspective, we express decision trees in the language of computational graph. We explicitly parameterize the test phase, traversal phase and prediction phase of decision trees based on the bitvectors of non-terminal nodes. As shown later, the decision tree is a shallow binary network in some sense. Especially, we introduce the bitvector matrix to implement the tree traversal in numerical approach, which is equivalent to convert the logical `AND' operation to numerical optimization. And we apply this numerical representation to extend and unify diverse decision trees in concept.
翻译:决策树看起来像一个简单的计算图,没有周期, 只有叶节点指定输出值和非终点值指定其测试或计算。 从数字角度, 我们用计算图的语言表达决定树。 我们根据非终点节点的位子, 明确参数化了决定树的测试阶段、 跨阶段和预测阶段。 如下文所示, 决定树在某种意义上是一个浅的二进制网络。 特别是, 我们引入比特维特矩阵, 以数字方式执行树的跨行法, 这相当于将逻辑的“ AND” 操作转换为数字优化。 我们应用此数字表示法来扩展和统一概念上不同的决定树 。