Realizing the potential of mixed-signal neuromorphic processors for ultra-low-power inference and learning requires efficient use of their inhomogeneous analog circuitry as well as sparse, time-based information encoding and processing. Here, we investigate spike-timing-based spatiotemporal receptive fields of output-neurons in the Spatiotemporal Correlator (STC) network, for which we used excitatory-inhibitory balanced disynaptic inputs instead of dedicated axonal or neuronal delays. We present hardware-in-the-loop experiments with a mixed-signal DYNAP-SE neuromorphic processor, in which five-dimensional receptive fields of hardware neurons were mapped by randomly sampling input spike-patterns from a uniform distribution. We find that, when the balanced disynaptic elements are randomly programmed, some of the neurons display distinct receptive fields. Furthermore, we demonstrate how a neuron was tuned to detect a particular spatiotemporal feature, to which it initially was non-selective, by activating a different subset of the inhomogeneous analog synaptic circuits. The energy dissipation of the balanced synaptic elements is one order of magnitude lower per lateral connection (0.65 nJ vs 9.3 nJ per spike) than former delay-based neuromorphic hardware implementations. Thus, we show how the inhomogeneous synaptic circuits could be utilized for resource-efficient implementation of STC network layers, in a way that enables synapse-address reprogramming as a discrete mechanism for feature tuning.


翻译:实现超低功率电解导和学习混合信号神经形态处理器的潜力,需要高效地使用它们不相容的模拟电路以及分散的、基于时间的信息编码和处理。在这里,我们调查了SpatiotemotionCorrolator (STC) 网络中基于悬浮的超模模模模调中中枢容场,我们为此使用了超感性-免疫平衡的分解输入,而不是专门的轴或神经离析延迟。我们展示了神经元在流动中与混合信号网络的DYNAP-SE神经形态处理器进行硬件在流动中的实验,在这个过程中,五维可接受的硬件神经元字段是通过从统一分布中随机采样的输入峰数模式绘制的。我们发现,当平衡的分解元素被随机编程时,有些神经元显示明显的容域。 此外,我们展示了神经元是如何被调出来检测某种特定的脉搏变异形特征的,它最初是非选择性的。通过启动一个不同层次的直径直径直系的直径直径直系神经结构的直系连接,从而显示一个稳定的直径直径直径直系序列的直系序列的直系序列的直系序列的直径序。

0
下载
关闭预览

相关内容

【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Unifying Nonlocal Blocks for Neural Networks
Arxiv
0+阅读 · 2021年8月5日
Arxiv
0+阅读 · 2021年8月4日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员