Physical human-robot interaction can improve human ergonomics, task efficiency, and the flexibility of automation, but often requires application-specific methods to detect human state and determine robot response. At the same time, many potential human-robot interaction tasks involve discrete modes, such as phases of a task or multiple possible goals, where each mode has a distinct objective and human behavior. In this paper, we propose a novel method for multi-modal physical human-robot interaction that builds a Gaussian process model for human force in each mode of a collaborative task. These models are then used for Bayesian inference of the mode, and to determine robot reactions through model predictive control. This approach enables optimization of robot trajectory based on the belief of human intent, while considering robot impedance and human joint configuration, according to ergonomic- and/or task-related objectives. The proposed method reduces programming time and complexity, requiring only a low number of demonstrations (here, three per mode) and a mode-specific objective function to commission a flexible online human-robot collaboration task. We validate the method with experiments on an admittance-controlled industrial robot, performing a collaborative assembly task with two modes where assistance is provided in full six degrees of freedom. It is shown that the developed algorithm robustly re-plans to changes in intent or robot initial position, achieving online control at 15 Hz.
翻译:人体- 机器人相互作用可以改善人类的人体工程学、任务效率以及自动化的灵活性,但通常需要应用特定的方法来检测人类状态和确定机器人反应。 同时,许多潜在的人体- 机器人相互作用任务涉及离散模式,例如任务阶段或多种可能的目标,其中每种模式都有不同的目标和人类行为。在本文件中,我们提出一种新型的多模式人体- 机器人相互作用方法,在合作任务的每一种模式下,为人类力量建立高斯进程模型。这些模型然后用于对模式进行贝耶斯推断,并通过模型预测控制确定机器人反应。这种方法能够根据对人类意图的信念优化机器人轨迹,同时考虑机器人阻力和人类联合配置,同时考虑每个模式有不同的目标和人类行为。我们提议的方法可以减少程序设计的时间和复杂性,只需要少量的演示(这里,每种模式,三种模式)和特定模式的目标功能,用于委托一个灵活的在线人类机器人协作位置,通过模型预测控制模型控制机器人反应机器人反应。我们通过初步验证基于人类意图的机器人轨迹的机器人轨迹轨迹,在最初的六度上, 测试中展示了稳健健健健制的机器人操作模式。