In this paper, we address the problem of image anomaly detection and segmentation. Anomaly detection involves making a binary decision as to whether an input image contains an anomaly, and anomaly segmentation aims to locate the anomaly on the pixel level. Support vector data description (SVDD) is a long-standing algorithm used for an anomaly detection, and we extend its deep learning variant to the patch-based method using self-supervised learning. This extension enables anomaly segmentation and improves detection performance. As a result, anomaly detection and segmentation performances measured in AUROC on MVTec AD dataset increased by 9.8% and 7.0%, respectively, compared to the previous state-of-the-art methods. Our results indicate the efficacy of the proposed method and its potential for industrial application. Detailed analysis of the proposed method offers insights regarding its behavior, and the code is available online.


翻译:在本文中,我们处理图像异常探测和分解问题。 异常探测涉及对输入图像是否包含异常作出二进制决定, 异常分解旨在将异常点定位在像素水平上。 支持矢量数据描述( SVDD) 是用于异常点检测的长期算法, 我们使用自我监督的学习将其深层学习变量推广到补丁法。 此扩展使异常分解得以进行, 并改进检测性能。 结果, AUROC 测量的MVTec AD数据集异常探测和分解性能与以往最新方法相比分别增加了9.8%和7.0%。 我们的结果显示了拟议方法的功效及其在工业应用方面的潜力。 对拟议方法的详细分析提供了对其行为的深入了解, 代码可以在线查阅。

4
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
简明扼要!Python教程手册,206页pdf
专知会员服务
46+阅读 · 2020年3月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
159+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
6+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
6+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员