In the context of statistical learning, the Information Bottleneck method seeks a right balance between accuracy and generalization capability through a suitable tradeoff between compression complexity, measured by minimum description length, and distortion evaluated under logarithmic loss measure. In this paper, we study a variation of the problem, called scalable information bottleneck, in which the encoder outputs multiple descriptions of the observation with increasingly richer features. The model, which is of successive-refinement type with degraded side information streams at the decoders, is motivated by some application scenarios that require varying levels of accuracy depending on the allowed (or targeted) level of complexity. We establish an analytic characterization of the optimal relevance-complexity region for vector Gaussian sources. Then, we derive a variational inference type algorithm for general sources with unknown distribution; and show means of parametrizing it using neural networks. Finally, we provide experimental results on the MNIST dataset which illustrate that the proposed method generalizes better to unseen data during the training phase.


翻译:在统计学习方面,信息瓶颈方法力求通过适当权衡压缩复杂性(以最低描述长度衡量)和对数损失测量评估的扭曲之间的适当权衡,在准确性和一般化能力之间求得正确的平衡。在本文中,我们研究了这一问题的变异性,称为可缩放信息瓶颈,其中编码器输出的观测特征越来越丰富的多种描述。该模型是分解器分流退化的侧端信息流的相继精度类型,其动因是某些应用情景,这些情景要求根据允许(或目标)复杂程度的不同精确度。我们为矢量高斯源的最佳相关性-相容性区域制定了分析性的定性。随后,我们为分布不明的一般源得出了一种变异的推论类型算法;并展示了使用神经网络使其半化的手段。最后,我们提供了MNIST数据集的实验结果,表明,拟议的方法在培训阶段更好地概括了隐形数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
75+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
1+阅读 · 2021年4月8日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员