We show that if a permutation statistic can be written as a linear combination of bivincular patterns, then its moments can be expressed as a linear combination of factorials with constant coefficients. This generalizes a result of Zeilberger. We use an approach of Chern, Diaconis, Kane and Rhoades, previously applied on set partitions and matchings. In addition, we give a new proof of the central limit theorem (CLT) for the number of occurrences of classical patterns, which uses a lemma of Burstein and Hasto. We give a simple interpretation of this lemma and an analogous lemma that would imply the CLT for the number of occurrences of any vincular pattern. Furthermore, we obtain explicit formulas for the moments of the descents and the minimal descents statistics. The latter is used to give a new direct proof of the fact that we do not necessarily have asymptotic normality of the number of pattern occurrences in the case of bivincular patterns. Closed forms for some of the higher moments of several popular statistics on permutations are also obtained.


翻译:我们显示,如果变异统计可以作为双视模式的线性组合写成,那么其时刻可以作为元素与恒定系数的线性组合来表达。 这概括了Zeilberger的结果。 我们使用切恩、迪亚科尼斯、凯恩和罗德斯的方法, 先前在设定分区和匹配上应用过。 此外, 我们给出新的证据, 证明古典模式的发生次数的中央限值理论( CLT), 古典模式使用布尔斯坦和哈斯托的利玛。 我们简单解释这一元素和类似的利玛, 表示任何隐性模式发生次数的CLT。 此外, 我们获得关于世系和最小血统统计的明确公式。 后者用来提供新的直接证据, 证明我们不一定在双视模式中出现模式的规律性常态。 某些较高级的流行统计也以封闭的形式获得。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月10日
Arxiv
0+阅读 · 2021年11月9日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员