Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces. Recently, Signed Distance Functions (SDFs) and Occupany Functions are adopted in learning-based shape reconstruction methods as implicit 3D shape representation. This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks. Unlike the previous methods, which predict point occupancy with fully-connected multi-layer networks, we adapt the point cloud deep learning architecture, Point Convolution Neural Network (PCNN), to build our learning model. Specifically, we create a sampling operator and insert it into PCNN to continuously sample the feature space at the points where occupancy states need to be predicted. This method natively obtains point cloud data's geometric nature, and it's invariant to point permutation. Our occupancy function learning can be easily fit into procedures of point cloud up-sampling and surface reconstruction. Our experiments show state-of-the-art performance for reconstructing With ShapeNet dataset and demonstrate this method's well-generalization by testing it with McGill 3D dataset \cite{siddiqi2008retrieving}. Moreover, we find the learned occupancy function is relatively more rotation invariant than previous shape learning methods.
翻译:基于表面重建的隐性功能基础表面重建已经研究了很长一段时间,以便从从表面取样的点云中恢复3D形状。 最近, 以基于学习的形状重建方法中采用了基于签名的距离函数(SDFs) 和 Occupany 函数, 以隐含的 3D 形状表示 。 本文提出了从稀疏的云中学习占用功能的新方法, 并在具有挑战性的表面重建任务中取得更好的表现。 与以往的方法不同, 我们用完全连接的多层网络预测点占用点, 我们调整点云深度学习结构( Point Convolution Neural Net) 以构建我们的学习模型。 具体而言, 我们创建了一个取样操作器, 并将其插入到 PCNNN 中, 以便在需要预测占用状态的点上持续地取样特征空间。 这个方法本地获取点云点数据的几何性质, 并且它无法定位。 我们的占用功能很容易适应点云层取样和地重建程序。 我们的实验展示了用 ShaNet 数据集进行重建的状态, 并展示这一方法的精确化方法, 。