Up-to-date High-Definition (HD) maps are essential for self-driving cars. To achieve constantly updated HD maps, we present a deep neural network (DNN), Diff-Net, to detect changes in them. Compared to traditional methods based on object detectors, the essential design in our work is a parallel feature difference calculation structure that infers map changes by comparing features extracted from the camera and rasterized images. To generate these rasterized images, we project map elements onto images in the camera view, yielding meaningful map representations that can be consumed by a DNN accordingly. As we formulate the change detection task as an object detection problem, we leverage the anchor-based structure that predicts bounding boxes with different change status categories. To the best of our knowledge, the proposed method is the first end-to-end network that tackles the high-definition map change detection task, yielding a single stage solution. Furthermore, rather than relying on single frame input, we introduce a spatio-temporal fusion module that fuses features from history frames into the current, thus improving the overall performance. Finally, we comprehensively validate our method's effectiveness using freshly collected datasets. Results demonstrate that our Diff-Net achieves better performance than the baseline methods and is ready to be integrated into a map production pipeline maintaining an up-to-date HD map.


翻译:最新的高定义( HD) 地图对于汽车自驾驶至关重要 。 为了实现不断更新的 HD 地图, 我们展示了一个深神经网络( DNN) Diff-Net 来检测这些变化。 与基于天体探测器的传统方法相比, 我们工作中的基本设计是一个平行的特征差异计算结构, 通过比较从相机和光化图像中提取的特征来推断地图变化。 为了生成这些光化图像, 我们将元素投放到相机视图中的图像上, 产生一个可以由 DNN 相应消耗的有意义的地图表达方式。 当我们把变化探测任务设计成一个目标探测问题时, 我们利用基于锚的结构来预测不同变化状态类别的框。 根据我们所知, 我们工作的基本设计是第一个端到端的网络, 通过比较从相机和光化图像中提取一个单一的解决方案。 此外, 我们不用依靠单个框架输入, 我们引入一个可连接历史框架特性的磁盘混凝模模模模模模模模版, 从而改进总体生产效果。 最后, 我们全面验证我们的方法, 将一个最新的运行方法, 将更精确地显示到一个最新的基础 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年9月27日
专知会员服务
32+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员