This paper proposes an online path planning and motion generation algorithm for heterogeneous robot teams performing target search in a real-world environment. Path selection for each robot is optimized using an information-theoretic formulation and is computed sequentially for each agent. First, we generate candidate trajectories sampled from both global waypoints derived from vertical cell decomposition and local frontier points. From this set, we choose the path with maximum information gain. We demonstrate that the hierarchical sequential decision-making structure provided by the algorithm is scalable to multiple agents in a simulation setup. We also validate our framework in a real-world apartment setting using a two robot team comprised of the Unitree A1 quadruped and the Toyota HSR mobile manipulator searching for a person. The agents leverage an efficient leader-follower communication structure where only critical information is shared.
翻译:本文为在现实世界环境中进行目标搜索的多式机器人团队提出了一个在线路径规划和动作生成算法。 每个机器人的路径选择使用信息理论配方进行优化,并按顺序为每个代理商计算。 首先,我们从垂直细胞分解和本地边境点得出的全球路径点中采集了候选轨迹样本。 我们从这一组中选择路径,并获得尽可能多的信息。 我们证明该算法提供的按等级顺序排列的决策结构在模拟设置中可以向多个代理商推广。 我们还利用由Unite A1 组成的两个机器人组和由丰田HSR移动操纵器为个人搜索组成的两个机器人组来验证我们在一个真实世界公寓设置中的框架。 代理商利用一个高效的领导- 追随者通信结构,只有关键信息可以共享。