This paper generalizes the notion of sufficiency for estimation problems beyond maximum likelihood. In particular, we consider estimation problems based on Jones et al. and Basu et al. likelihood functions that are popular among distance-based robust inference methods. We first characterize the probability distributions that always have a fixed number of sufficient statistics (independent of sample size) with respect to these likelihood functions. These distributions are power-law extensions of the usual exponential family and contain Student distributions as a special case. We then extend the notion of minimal sufficient statistics and compute it for these power-law families. Finally, we establish a Rao-Blackwell-type theorem for finding the best estimators for a power-law family. This helps us establish Cram\'er-Rao-type lower bounds for power-law families.
翻译:暂无翻译