We propose to use a ResNet-18 architecture that was pre-trained on the FER+ dataset for tackling the problem of affective behavior analysis in-the-wild (ABAW) for classification of the seven basic expressions, namely, neutral, anger, disgust, fear, happiness, sadness and surprise. As part of the second workshop and competition on affective behavior analysis in-the-wild (ABAW2), a database consisting of 564 videos with around 2.8M frames is provided along with labels for these seven basic expressions. We resampled the dataset to counter class-imbalances by under-sampling the over-represented classes and over-sampling the under-represented classes along with class-wise weights. To avoid overfitting we performed data-augmentation and used L2 regularisation. Our classifier reaches an ABAW2 score of 0.4 and therefore exceeds the baseline results provided by the hosts of the competition.
翻译:我们建议使用在FER+数据集上经过预先培训的ResNet-18结构,解决在网上进行情感行为分析的问题,对七个基本表达方式进行分类,即中性、愤怒、厌恶、恐惧、快乐、悲伤和惊讶,作为第二次讲习班和在网上进行情感行为分析竞赛的一部分(ABAW2),一个由大约2.8M框架的564个视频组成的数据库,连同这七个基本表达方式的标签一起提供。我们通过对代表人数过多的班级进行抽样抽样调查,对代表人数不足的班级进行过多抽样抽样,加上等级加权重量,对数据集进行重新抽样,以对抗阶级不平衡现象。避免我们进行数据放大和使用L2常规化,我们的分类者达到ABAW2分数0.4,因此超过了竞争东道方提供的基线结果。