In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches reach their limits. However, it is still unclear why randomly initialized gradient descent optimization algorithms, such as the well-known batch gradient descent, are able to achieve zero training loss in many situations even though the objective function is non-convex and non-smooth. One of the most promising approaches to solving this problem in the field of supervised learning is the analysis of gradient descent optimization in the so-called overparameterized regime. In this article we provide a further contribution to this area of research by considering overparameterized fully-connected rectified artificial neural networks with biases. Specifically, we show that for a fixed number of training data the mean squared error using batch gradient descent optimization applied to such a randomly initialized artificial neural network converges to zero at a linear convergence rate as long as the width of the artificial neural network is large enough, the learning rate is small enough, and the training input data are pairwise linearly independent.


翻译:近年来,人工神经网络已发展成为处理一系列问题的一个有力工具,而传统解决办法已达极限;然而,仍然不清楚的是,为什么随机初始化梯度下降优化算法,如众所周知的分批梯度下降,在许多情况下能够实现零培训损失,即使客观功能是非隐形和无悬浮的。在监督学习领域解决这一问题的最有希望的方法之一是在所谓的超分化制度中分析梯度下降优化。在本条中,我们通过考虑过度校准完全连接的、有偏见的人工神经网络,为这一研究领域作出了进一步贡献。具体地说,我们表明,对于固定数量的培训数据而言,在随机初始化人工神经网络宽度足够大的情况下,对随机初始化的人工神经网络应用的分批度梯度下降优化,其平均正方形错误在线性趋同率上达到零,只要人工神经网络宽度足够大,学习率就太小,培训输入数据线性独立。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN),它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员