We describe Sockeye (version 1.12), an open-source sequence-to-sequence toolkit for Neural Machine Translation (NMT). Sockeye is a production-ready framework for training and applying models as well as an experimental platform for researchers. Written in Python and built on MXNet, the toolkit offers scalable training and inference for the three most prominent encoder-decoder architectures: attentional recurrent neural networks, self-attentional transformers, and fully convolutional networks. Sockeye also supports a wide range of optimizers, normalization and regularization techniques, and inference improvements from current NMT literature. Users can easily run standard training recipes, explore different model settings, and incorporate new ideas. In this paper, we highlight Sockeye's features and benchmark it against other NMT toolkits on two language arcs from the 2017 Conference on Machine Translation (WMT): English-German and Latvian-English. We report competitive BLEU scores across all three architectures, including an overall best score for Sockeye's transformer implementation. To facilitate further comparison, we release all system outputs and training scripts used in our experiments. The Sockeye toolkit is free software released under the Apache 2.0 license.

7
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/

Sequence to sequence learning models still require several days to reach state of the art performance on large benchmark datasets using a single machine. This paper shows that reduced precision and large batch training can speedup training by nearly 5x on a single 8-GPU machine with careful tuning and implementation. On WMT'14 English-German translation, we match the accuracy of (Vaswani et al 2017) in under 5 hours when training on 8 GPUs and we obtain a new state of the art of 29.3 BLEU after training for 91 minutes on 128 GPUs. We further improve these results to 29.8 BLEU by training on the much larger Paracrawl dataset.

0
3
下载
预览

Despite impressive progress in high-resource settings, Neural Machine Translation (NMT) still struggles in low-resource and out-of-domain scenarios, often failing to match the quality of phrase-based translation. We propose a novel technique that combines back-translation and multilingual NMT to improve performance in these difficult cases. Our technique trains a single model for both directions of a language pair, allowing us to back-translate source or target monolingual data without requiring an auxiliary model. We then continue training on the augmented parallel data, enabling a cycle of improvement for a single model that can incorporate any source, target, or parallel data to improve both translation directions. As a byproduct, these models can reduce training and deployment costs significantly compared to uni-directional models. Extensive experiments show that our technique outperforms standard back-translation in low-resource scenarios, improves quality on cross-domain tasks, and effectively reduces costs across the board.

0
5
下载
预览

OpenNMT is an open-source toolkit for neural machine translation (NMT). The system prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modalities, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques. OpenNMT has been used in several production MT systems, modified for numerous research papers, and is implemented across several deep learning frameworks.

0
3
下载
预览

Standard machine translation systems process sentences in isolation and hence ignore extra-sentential information, even though extended context can both prevent mistakes in ambiguous cases and improve translation coherence. We introduce a context-aware neural machine translation model designed in such way that the flow of information from the extended context to the translation model can be controlled and analyzed. We experiment with an English-Russian subtitles dataset, and observe that much of what is captured by our model deals with improving pronoun translation. We measure correspondences between induced attention distributions and coreference relations and observe that the model implicitly captures anaphora. It is consistent with gains for sentences where pronouns need to be gendered in translation. Beside improvements in anaphoric cases, the model also improves in overall BLEU, both over its context-agnostic version (+0.7) and over simple concatenation of the context and source sentences (+0.6).

0
3
下载
预览

Neural machine translation (NMT) has been a new paradigm in machine translation, and the attention mechanism has become the dominant approach with the state-of-the-art records in many language pairs. While there are variants of the attention mechanism, all of them use only temporal attention where one scalar value is assigned to one context vector corresponding to a source word. In this paper, we propose a fine-grained (or 2D) attention mechanism where each dimension of a context vector will receive a separate attention score. In experiments with the task of En-De and En-Fi translation, the fine-grained attention method improves the translation quality in terms of BLEU score. In addition, our alignment analysis reveals how the fine-grained attention mechanism exploits the internal structure of context vectors.

0
4
下载
预览

Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense be- fore feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.

0
3
下载
预览

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

0
4
下载
预览

This paper describes XNMT, the eXtensible Neural Machine Translation toolkit. XNMT distin- guishes itself from other open-source NMT toolkits by its focus on modular code design, with the purpose of enabling fast iteration in research and replicable, reliable results. In this paper we describe the design of XNMT and its experiment configuration system, and demonstrate its utility on the tasks of machine translation, speech recognition, and multi-tasked machine translation/parsing. XNMT is available open-source at https://github.com/neulab/xnmt

0
3
下载
预览

In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.

0
6
下载
预览

Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.

0
5
下载
预览
小贴士
相关论文
Myle Ott,Sergey Edunov,David Grangier,Michael Auli
3+阅读 · 2018年6月1日
Xing Niu,Michael Denkowski,Marine Carpuat
5+阅读 · 2018年5月29日
Guillaume Klein,Yoon Kim,Yuntian Deng,Vincent Nguyen,Jean Senellart,Alexander M. Rush
3+阅读 · 2018年5月28日
Elena Voita,Pavel Serdyukov,Rico Sennrich,Ivan Titov
3+阅读 · 2018年5月25日
Heeyoul Choi,Kyunghyun Cho,Yoshua Bengio
4+阅读 · 2018年4月3日
Frederick Liu,Han Lu,Graham Neubig
3+阅读 · 2018年3月28日
Zhirui Zhang,Shujie Liu,Mu Li,Ming Zhou,Enhong Chen
4+阅读 · 2018年3月1日
Graham Neubig,Matthias Sperber,Xinyi Wang,Matthieu Felix,Austin Matthews,Sarguna Padmanabhan,Ye Qi,Devendra Singh Sachan,Philip Arthur,Pierre Godard,John Hewitt,Rachid Riad,Liming Wang
3+阅读 · 2018年3月1日
Mikel Artetxe,Gorka Labaka,Eneko Agirre,Kyunghyun Cho
6+阅读 · 2018年2月26日
Jinsong Su,Shan Wu,Deyi Xiong,Yaojie Lu,Xianpei Han,Biao Zhang
5+阅读 · 2018年1月16日
相关VIP内容
专知会员服务
29+阅读 · 2020年3月3日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
6+阅读 · 2018年12月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
22+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
5+阅读 · 2017年8月23日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
6+阅读 · 2015年7月1日
Top