Graph Representation Learning methods have enabled a wide range of learning problems to be addressed for data that can be represented in graph form. Nevertheless, several real world problems in economy, biology, medicine and other fields raised relevant scaling problems with existing methods and their software implementation, due to the size of real world graphs characterized by millions of nodes and billions of edges. We present GraPE, a software resource for graph processing and random walk based embedding, that can scale with large and high-degree graphs and significantly speed up-computation. GraPE comprises specialized data structures, algorithms, and a fast parallel implementation that displays everal orders of magnitude improvement in empirical space and time complexity compared to state of the art software resources, with a corresponding boost in the performance of machine learning methods for edge and node label prediction and for the unsupervised analysis of graphs.GraPE is designed to run on laptop and desktop computers, as well as on high performance computing clusters


翻译:然而,经济、生物学、医学和其他领域的几个实际世界问题,在现行方法及其软件实施方面,由于以数百万节点和数十亿边缘为特征的真实世界图表的大小,提出了与现有方法及其软件实施有关的规模问题。我们介绍了GraPE,这是一个用于图形处理和随机行走嵌入的软件资源,可以与大度和高度图形相匹配,并大大加快计算速度。GraPE包括专门的数据结构、算法和快速平行实施,表明经验空间和时间复杂性与艺术软件资源状况相比在规模上不断提高,并相应推动了边缘和节点标签预测的机器学习方法的性能以及对图形的未经监督的分析。GraPE设计在膝上和台式计算机上运行,以及高性能计算集群上运行。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
6+阅读 · 2019年11月14日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2017年9月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
6+阅读 · 2019年11月14日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2017年9月14日
Top
微信扫码咨询专知VIP会员