There has been growing interest in using photonic processors for performing neural network inference operations; however, these networks are currently trained using standard digital electronics. Here, we propose on-chip training of neural networks enabled by a CMOS-compatible silicon photonic architecture to harness the potential for massively parallel, efficient, and fast data operations. Our scheme employs the direct feedback alignment training algorithm, which trains neural networks using error feedback rather than error backpropagation, and can operate at speeds of trillions of multiply-accumulate (MAC) operations per second while consuming less than one picojoule per MAC operation. The photonic architecture exploits parallelized matrix-vector multiplications using arrays of microring resonators for processing multi-channel analog signals along single waveguide buses to calculate the gradient vector for each neural network layer in situ. We also experimentally demonstrate training deep neural networks with the MNIST dataset using on-chip MAC operation results. Our novel approach for efficient, ultra-fast neural network training showcases photonics as a promising platform for executing AI applications.
翻译:对使用光度处理器进行神经网络推断操作的兴趣日益浓厚;然而,这些网络目前是使用标准数字电子技术培训的。在这里,我们建议对由CMOS兼容的硅光度光度结构所支持的神经网络进行芯片培训,以利用大规模平行、高效和快速数据操作的潜力。我们的计划采用直接反馈调整培训算法,即利用错误反馈而不是反向反射来培训神经网络,并且能够以数万万亿倍倍累积操作的速度运作,同时每兆倍累积操作消耗不到一个微焦。光度结构利用平行矩阵-摄像头的倍增法,使用微光器阵列处理单波导客车的多通道模拟信号,以计算每个神经网络层的梯度矢量。我们还实验性地展示了利用电离心机操作结果进行MNMIST数据集的深层神经网络培训。我们为高效、超长的神经网络培训设计的新方法展示了光谱,作为执行AI应用的有希望的平台。