As machine learning powered decision making is playing an increasingly important role in our daily lives, it is imperative to strive for fairness of the underlying data processing and algorithms. We propose a pre-processing algorithm for fair data representation via which L2- objective supervised learning algorithms result in an estimation of the Pareto frontier between prediction error and statistical disparity. In particular, the present work applies the optimal positive definite affine transport maps to approach the post-processing Wasserstein barycenter characterization of the optimal fair L2-objective supervised learning via a pre-processing data deformation. We call the resulting data Wasserstein pseudo-barycenter. Furthermore, we show that the Wasserstein geodesics from the learning outcome marginals to the barycenter characterizes the Pareto frontier between L2-loss and total Wasserstein distance among learning outcome marginals. Thereby, an application of McCann interpolation generalizes the pseudo-barycenter to a family of data representations via which L2-objective supervised learning algorithms result in the Pareto frontier. Numerical simulations underscore the advantages of the proposed data representation: (1) the pre-processing step is compositive with arbitrary L2-objective supervised learning methods and unseen data; (2) the fair representation protects data privacy by preventing the training machine from direct or indirect access to the sensitive information of the data; (3) the optimal affine map results in efficient computation of fair supervised learning on high-dimensional data; (4) experimental results shed light on the fairness of L2-objective unsupervised learning via the proposed fair data representation.
翻译:由于机器学习有动力的决策正在我们的日常生活中发挥着越来越重要的作用,因此,必须努力争取基础数据处理和算法的公平性。我们提出公平数据代表制的预处理算法,通过这一算法,L2 - 客观监督的学习算法可以估计预测错误和统计差异之间的帕雷托边界;特别是,目前的工作采用最佳的肯定的远距运算图,以接近处理后的瓦塞斯坦号后期运输图,通过处理前的数据变形,将最佳的公平L2 - 客观监督的L2 - 监督的学习定位中心定性为最佳的公平性公平性L2 - 监督的监控性学习。此外,我们指出,从学习结果边缘到巴雷托中心,瓦塞斯坦测地测地学的大地学学地标,是帕雷托在预测错误和统计结果之间的边界。 因此,麦坎恩的相互调法将假相中心一般地概括为一组数据表示法,通过L2 - 客观监督的公平性学习算法在帕雷托边界上的结果。 数字模拟模拟模拟模拟模拟模拟强调从学习结果的不透明性、直接数据代表制数据代表制的正确性,通过透明性数据代表制数据分析过程,通过分析过程前的正确性、记录,从而保护高级数据代表制数据代表制的正确性地、测测测测取数据分析结果。