Hyperdimensional Computing (HDC) is a computation framework based on properties of high-dimensional random spaces. It is particularly useful for machine learning in resource-constrained environments, such as embedded systems and IoT, as it achieves a good balance between accuracy, efficiency and robustness. The mapping of information to the hyperspace, named encoding, is the most important stage in HDC. At its heart are basis-hypervectors, responsible for representing the smallest units of meaningful information. In this work we present a detailed study on basis-hypervector sets, which leads to practical contributions to HDC in general: 1) we propose an improvement for level-hypervectors, used to encode real numbers; 2) we introduce a method to learn from circular data, an important type of information never before addressed in machine learning with HDC. Empirical results indicate that these contributions lead to considerably more accurate models for both classification and regression with circular data.
翻译:超维计算(HDC)是一个基于高维随机空间特性的计算框架,对于在资源受限制的环境中,例如嵌入系统和IoT等,机器学习特别有用,因为它在准确性、效率和稳健性之间实现了良好的平衡。将信息映射到超空间(称为编码)是HDC最重要的阶段。在它的心脏上,信息是基础-导体,负责代表最小的有意义信息单位。在这项工作中,我们提出一份关于基础-导体集的详细研究报告,从而给HDC带来总体的实际贡献:1)我们建议改进用于编码真实数字的层次-导体;2)我们引入一种方法,从循环数据中学习,这是一种重要类型的信息,在与HDC的机器学习中从未涉及过。 Empicalal结果显示,这些贡献为分类和循环数据回归提供了相当准确的模型。