We consider the problem of learning mixtures of Gaussians under the constraint of approximate differential privacy. We prove that $\widetilde{O}(k^2 d \log^{3/2}(1/\delta) / \alpha^2 \varepsilon)$ samples are sufficient to learn a mixture of $k$ axis-aligned Gaussians in $\mathbb{R}^d$ to within total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-differential privacy. This is the first result for privately learning mixtures of unbounded axis-aligned (or even unbounded univariate) Gaussians. If the covariance matrices of each of the Gaussians is the identity matrix, we show that $\widetilde{O}(kd/\alpha^2 + kd \log(1/\delta) / \alpha \varepsilon)$ samples are sufficient. Recently, the "local covering" technique of Bun, Kamath, Steinke, and Wu has been successfully used for privately learning high-dimensional Gaussians with a known covariance matrix and extended to privately learning general high-dimensional Gaussians by Aden-Ali, Ashtiani, and Kamath. Given these positive results, this approach has been proposed as a promising direction for privately learning mixtures of Gaussians. Unfortunately, we show that this is not possible. We design a new technique for privately learning mixture distributions. A class of distributions $\mathcal{F}$ is said to be list-decodable if there is an algorithm that, given "heavily corrupted" samples from $f\in \mathcal{F}$, outputs a list of distributions, $\widehat{\mathcal{F}}$, such that one of the distributions in $\widehat{\mathcal{F}}$ approximates $f$. We show that if $\mathcal{F}$ is privately list-decodable, then we can privately learn mixtures of distributions in $\mathcal{F}$. Finally, we show axis-aligned Gaussian distributions are privately list-decodable, thereby proving mixtures of such distributions are privately learnable.


翻译:我们考虑的是高斯人的学习混合物问题, 在大约不同隐私的限制下。 我们证明美元( 瓦列西隆 ) (k) 2 d\ log3/2} (1/\delta) /\ pha2\ 2\ varepsilon) 样本足以学习以美元( mathb{ ) 为轴的高斯人的混合 。 以美元( mathb{ ) 为单位, 以美元为单位, 以美元为单位, 以美元为单位 。 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位,以美元为单位,以美元为单位,以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位,以美元,以美元为单位,以美元为单位,以美元,以美元为单位,以美元,以美元为单位,以美元, 以美元,以美元,以美元为单位, 以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元,以美元,以美元为单位,以美元,以美元,以

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员