The goal of representation learning is different from the ultimate objective of machine learning such as decision making, it is therefore very difficult to establish clear and direct objectives for training representation learning models. It has been argued that a good representation should disentangle the underlying variation factors, yet how to translate this into training objectives remains unknown. This paper presents an attempt to establish direct training criterions and design principles for developing good representation learning models. We propose that a good representation learning model should be maximally expressive, i.e., capable of distinguishing the maximum number of input configurations. We formally define expressiveness and introduce the maximum expressiveness (MEXS) theorem of a general learning model. We propose to train a model by maximizing its expressiveness while at the same time incorporating general priors such as model smoothness. We present a conscience competitive learning algorithm which encourages the model to reach its MEXS whilst at the same time adheres to model smoothness prior. We also introduce a label consistent training (LCT) technique to boost model smoothness by encouraging it to assign consistent labels to similar samples. We present extensive experimental results to show that our method can indeed design representation learning models capable of developing representations that are as good as or better than state of the art. We also show that our technique is computationally efficient, robust against different parameter settings and can work effectively on a variety of datasets. Code available at https://github.com/qlilx/odgrlm.git


翻译:代表性学习的目标与诸如决策等机器学习的最终目标不同,因此很难为代表性学习模式确定明确和直接的目标,因此,很难为代表性学习模式的培训确定明确和直接的目标,有人争辩说,良好的代表性应该解开基本的变异因素,但如何将它转化为培训目标仍然不为人知。本文试图为开发良好的代表性学习模式制定直接的培训标准和设计原则。我们提议,良好的代表性学习模式应当具有最大程度的表达性,即能够区分投入配置的最大数量。我们正式界定明确性,并引入一般学习模式的最大表达性(MEXS)理论。我们提出广泛的实验性结果,通过最大限度地表达性(MEX)来培训模型,同时纳入一般的变异因素,例如模型的平稳性。我们提出了一种鼓励模型达到代表性模式的直接培训标准和设计原则,同时遵循以前的模型的平稳性。我们还采用了一种标签一致的培训(LCT)技术,通过鼓励它为相似的样本指定一致的标签来提升模型的畅通性。我们提出了广泛的实验性结果,以显示我们的方法能够有效地设计稳健健的模型,我们也可以在不同的计算方法上发展一种可靠的模型。

0
下载
关闭预览

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
专知会员服务
53+阅读 · 2019年12月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2021年3月10日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
35+阅读 · 2020年1月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
14+阅读 · 2021年3月10日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
35+阅读 · 2020年1月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Top
微信扫码咨询专知VIP会员