Traditional autonomous vehicle pipelines that follow a modular approach have been very successful in the past both in academia and industry, which has led to autonomy deployed on road. Though this approach provides ease of interpretation, its generalizability to unseen environments is limited and hand-engineering of numerous parameters is required, especially in the prediction and planning systems. Recently, deep reinforcement learning has been shown to learn complex strategic games and perform challenging robotic tasks, which provides an appealing framework for learning to drive. In this work, we propose a deep reinforcement learning framework to learn optimal control policy using waypoints and low-dimensional visual representations, also known as affordances. We demonstrate that our agents when trained from scratch learn the tasks of lane-following, driving around inter-sections as well as stopping in front of other actors or traffic lights even in the dense traffic setting. We note that our method achieves comparable or better performance than the baseline methods on the original and NoCrash benchmarks on the CARLA simulator.


翻译:过去,在学术界和行业中,采用模块化方法的传统自主车辆管道都非常成功,导致在公路上实行自治,虽然这种方法便于解释,但一般适用于看不见的环境是有限的,需要手工设计许多参数,特别是在预测和规划系统中。最近,深层强化学习显示学习复杂的战略游戏,执行具有挑战性的机器人任务,为学习驾驶提供了一个吸引的框架。在这项工作中,我们提议了一个深强化学习框架,学习最佳控制政策,利用路点和低维直观表现,也称为 " 负担者 " 。我们表明,我们受过训练的从零到零的代理人员学会了行车道、环绕路以及甚至在密集交通环境中在其他行为者或交通灯前停留的任务。我们注意到,我们的方法比CARLA模拟器的原始基准和诺格拉斯基准的基线方法取得类似或更好的业绩。

1
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年3月10日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
4+阅读 · 2018年10月5日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员