State of the art human pose estimation models continue to rely on large quantities of labelled data for robust performance. Since labelling budget is often constrained, active learning algorithms are important in retaining the overall performance of the model at a lower cost. Although active learning has been well studied in literature, few techniques are reported for human pose estimation. In this paper, we theoretically derive expected gradient length for regression, and propose EGL++, a novel heuristic algorithm that extends expected gradient length to tasks where discrete labels are not available. We achieve this by computing low dimensional representations of the original images which are then used to form a neighborhood graph. We use this graph to: 1) Obtain a set of neighbors for a given sample, with each neighbor iteratively assumed to represent the ground truth for gradient calculation 2) Quantify the probability of each sample being a neighbor in the above set, facilitating the expected gradient step. Such an approach allows us to provide an approximate solution to the otherwise intractable task of integrating over the continuous output domain. To validate EGL++, we use the same datasets (Leeds Sports Pose, MPII) and experimental design as suggested by previous literature, achieving competitive results in comparison to these methods.


翻译:由于标签预算经常受到限制,积极学习算法对于以较低成本保持模型的整体性能很重要。虽然积极学习在文献中研究过,但很少报告人类构成估计技术。在本文中,我们理论上得出回归的预期梯度长度,并提议EGL++,这是一种将预期梯度长度延伸至无法提供离散标签的任务的新的超自然算法。我们通过计算原始图像的低维表示法来实现这一点,然后用这些图像来形成相邻图。我们使用这个图解来:1)为某一样本获得一套邻居,每个邻居反复假定代表梯度计算地面真实性。2)量化每个样本作为上一组中邻居的可能性,便利预期梯度步骤。这种方法使我们能够为连续输出域的整合这一本来难以完成的任务提供大致的解决办法。为了验证EGL++,我们使用相同的数据集(Leeds Sport Pose, MPII)和实验设计方法,以这些方法进行比较。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Adaptive transfer learning
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Adaptive transfer learning
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员