Flexible microelectrode (FME) implantation into brain cortex is challenging due to the deformable fiber-like structure of FME probe and the interaction with critical bio-tissue. To ensure reliability and safety, the implantation process should be monitored carefully. This paper develops an image-based anomaly detection framework based on the microscopic cameras of the robotic FME implantation system. The unified framework is utilized at four checkpoints to check the micro-needle, FME probe, hooking result, and implantation point, respectively. Exploiting the existing object localization results, the aligned regions of interest (ROIs) are extracted from raw image and input to a pretrained vision transformer (ViT). Considering the task specifications, we propose a progressive granularity patch feature sampling method to address the sensitivity-tolerance trade-off issue at different locations. Moreover, we select a part of feature channels with higher signal-to-noise ratios from the raw general ViT features, to provide better descriptors for each specific scene. The effectiveness of the proposed methods is validated with the image datasets collected from our implantation system.
翻译:暂无翻译