Tissue-level semantic segmentation is a vital step in computational pathology. Fully-supervised models have already achieved outstanding performance with dense pixel-level annotations. However, drawing such labels on the giga-pixel whole slide images is extremely expensive and time-consuming. In this paper, we use only patch-level classification labels to achieve tissue semantic segmentation on histopathology images, finally reducing the annotation efforts. We proposed a two-step model including a classification and a segmentation phases. In the classification phase, we proposed a CAM-based model to generate pseudo masks by patch-level labels. In the segmentation phase, we achieved tissue semantic segmentation by our proposed Multi-Layer Pseudo-Supervision. Several technical novelties have been proposed to reduce the information gap between pixel-level and patch-level annotations. As a part of this paper, we introduced a new weakly-supervised semantic segmentation (WSSS) dataset for lung adenocarcinoma (LUAD-HistoSeg). We conducted several experiments to evaluate our proposed model on two datasets. Our proposed model outperforms two state-of-the-art WSSS approaches. Note that we can achieve comparable quantitative and qualitative results with the fully-supervised model, with only around a 2\% gap for MIoU and FwIoU. By comparing with manual labeling, our model can greatly save the annotation time from hours to minutes. The source code is available at: \url{https://github.com/ChuHan89/WSSS-Tissue}.


翻译:在计算病理学中, 分子和语义分解是一个至关重要的步骤 。 在分类阶段, 我们建议了一种基于 CAM 的模型, 以通过补丁标签生成假面具。 但是, 在分解阶段, 我们通过提议的多功能类同 Pseudo- Supervision 获得组织语义分解的标签非常昂贵和耗时。 在本文中, 我们只使用修补级分解标签, 以在组织病理图像中实现组织语义分解, 最后减少了批注努力 。 我们提出了一个新的两步模式化模型, 包括一个分类和分解阶段 。 在分类阶段, 我们提出了一种基于 CAM 的模型模型, 以生成假假面具。 在分级标签阶段, 我们用多功能类同级的多功能分解图集实现了组织语义分解。 我们进行了几项实验, 旨在缩小像素级和补丁级图解之间的信息分解。 作为本文的一部分, 我们引入了一个新的模型, 模型和分解分解的分解分解 。 用于肺癌瘤(LUAD-HES- I) 的代算方法, 在我们的两个模型上提出了一种可比较的结果。

0
下载
关闭预览

相关内容

【经典书】半监督学习,524页pdf
专知会员服务
137+阅读 · 2021年8月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
图像分类算法优化技巧:Bag of Tricks for Image Classification
人工智能前沿讲习班
8+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Deep Co-Training for Semi-Supervised Image Segmentation
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
图像分类算法优化技巧:Bag of Tricks for Image Classification
人工智能前沿讲习班
8+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员