Nowadays, one practical limitation of deep neural network (DNN) is its high degree of specialization to a single task or domain (e.g. one visual domain). It motivates researchers to develop algorithms that can adapt DNN model to multiple domains sequentially, meanwhile still performing well on the past domains, which is known as multi-domain learning. Conventional methods only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory usage during training, which makes it impossible to deploy into more and more widely used resource-limited edge devices, like mobile phone, IoT, embedded systems, etc. During our study, we observe that memory used for activation storage is the bottleneck that largely limits the training time and cost on edge devices. To reduce training memory usage, while keeping the domain adaption accuracy performance, in this work, we propose Deep Attention Adaptor, a novel on-device multi-domain learning method, aiming to achieve domain adaption on resource-limited edge devices in both fast and memory-efficient manner. During on-device training, DA2 freezes the weights of pre-trained backbone model to reduce the training memory consumption (i.e., no need to store activation features during backward propagation). Furthermore, to improve the adaption accuracy performance, we propose to improve the model capacity by learning a light-weight memory-efficient residual attention adaptor module. We validate DA2 on multiple datasets against state-of-the-art methods, which shows good improvement in both accuracy and training cost. Finally, we demonstrate the algorithm's efficiency on NIVDIA Jetson Nano tiny GPU, proving the proposed DA2 reduces the on-device memory consumption by 19-37x during training in comparison to the baseline methods.


翻译:目前,深神经网络(DNN)的一个实际局限性在于它高度专业化于单一任务或领域(例如一个视觉域),它激励研究人员开发能够将DNN模型按顺序调整到多个域的算法,同时仍然在以往域运行良好,这被称为多域学习。常规方法只注重提高精确度,同时忽略最低参数更新,而忽视培训期间的高计算和记忆使用率,这使得无法将更多、更广泛使用的资源有限的边缘设备,如移动电话、IOT、嵌入系统等。在我们的研究中,我们发现激活存储所用的记忆是瓶颈,它基本上限制边设备的培训时间和成本。为了减少培训记忆使用率,同时保持域的精确性能,在本工作中,我们建议深度关注调适量多域学习方法,目的是以快速和记忆效率的方式实现对资源有限的边端设备的域调整。在在线培训期间,DA2 冻结了前精度的精度模型的重量,以降低培训的精度和成本比值,以降低培训的精度,在升级期间,让我们的精度 升级升级到升级数据。

1
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员