In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.


翻译:在本文中,我们通过动态编程方法获得无限地平线问题完全离散近似值的错误界限;众所周知,如果考虑时间离散,且步骤大小为正数,则以美元为单位,则以美元为单位,则以无限地平线问题全离散的近似值为单位,如果价值函数(汉密尔顿-Jacobi-Bellman等方程式符合无限地平线)与离散时间问题的值函数(与远度相对应的汉密尔顿-Jacobi-Bellman等方程式的视觉溶解法)存在差错,则以美元(k/h)美元为单位,则以时间和空间为单位,包括空间离散的空间,则以美元(k/h)美元为单位,在文献中可以发现持续问题的价值函数与完全离散问题之间的差错。在本文件中,我们修订完全离散方法的误差,并在与时间离式假设的假设下证明,完全离散情况是美元(h)美元(k+k)美元(美元)的误差,使该方法在时间和空间上首次排序。这种误差与文献中的许多文件的数值实验与1美元/h/h)没有观察到。

0
下载
关闭预览

相关内容

【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
专知会员服务
31+阅读 · 2021年9月7日
专知会员服务
75+阅读 · 2021年3月16日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
244+阅读 · 2020年5月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关VIP内容
【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
专知会员服务
31+阅读 · 2021年9月7日
专知会员服务
75+阅读 · 2021年3月16日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
244+阅读 · 2020年5月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员