Reduced-order models are essential tools to deal with parametric problems in the context of optimization, uncertainty quantification, or control and inverse problems. The set of parametric solutions lies in a low-dimensional manifold (with dimension equal to the number of independent parameters) embedded in a large-dimensional space (dimension equal to the number of degrees of freedom of the full-order discrete model). A posteriori model reduction is based on constructing a basis from a family of snapshots (solutions of the full-order model computed offline), and then use this new basis to solve the subsequent instances online. Proper Orthogonal Decomposition (POD) reduces the problem into a linear subspace of lower dimension, eliminating redundancies in the family of snapshots. The strategy proposed here is to use a nonlinear dimensionality reduction technique, namely the kernel Principal Component Analysis (kPCA), in order to find a nonlinear manifold, with an expected much lower dimension, and to solve the problem in this low-dimensional manifold. Guided by this paradigm, the methodology devised here introduces different novel ideas, namely: 1) characterizing the nonlinear manifold using local tangent spaces, where the reduced-order problem is linear and based on the neighbouring snapshots, 2) the approximation space is enriched with the cross-products of the snapshots, introducing a quadratic description, 3) the kernel for kPCA is defined ad-hoc, based on physical considerations, and 4) the iterations in the reduced-dimensional space are performed using an algorithm based on a Delaunay tessellation of the cloud of snapshots in the reduced space. The resulting computational strategy is performing outstandingly in the numerical tests, alleviating many of the problems associated with POD and improving the numerical accuracy.


翻译:降序模型是处理优化、不确定性量化或控制和反向问题背景下的参数问题的必要工具。一组参数解决方案存在于一个大维空间(与全序离散模型的自由度等量相等的二维)嵌入的低维元体(与独立参数数相等的维度)中。后级模型的减少基于从一系列快照中构建一个基础(计算出全序离线模型的解析),然后利用这一新的基础解决随后的在线案例。适当的 Outhogonical 解剖(POD) 将问题降低到一个较低维度的线性子空间子空间下层,消除截图组的冗余。这里提出的战略是使用非线性度降低技术,即主元元组件分析(KPCA),以便找到一个非线性多维度的元模型,并解决这个低维度相关的问题。根据这个模型,在这里设计的方法引入了不同的新概念,即:1) 将空间的精确度转化为直径基的直径值, 使用不直径的直径推的直径直径判法, 以基础的直径直径直径直径推的直径推的直径直判法,在基的直径直径直判中, 基的直径直判的直判, 基的直判在基的直径直判中,在基的直径直判中,在基的直判中, 基的直径直径直判中, 基的直判的直判法是基的直判法是基的直判,以基的直径直判,以基的直径直径直判,在基的直径直判,在基的直判法,在基的直判法是基的直判,在基的直判法,以基的直判法,以基的直判法是基的直判,在基的直判,以基的直判法,以基的直判。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员