We propose a new nonparametric modeling framework for causal inference when outcomes depend on how agents are linked in a social or economic network. Such network interference describes a large literature on treatment spillovers, social interactions, social learning, information diffusion, disease and financial contagion, social capital formation, and more. Our approach works by first characterizing how an agent is linked in the network using the configuration of other agents and connections nearby as measured by path distance. The impact of a policy or treatment assignment is then learned by pooling outcome data across similarly configured agents. We demonstrate the approach by proposing an asymptotically valid test for the hypothesis of policy irrelevance/no treatment effects and bounding the mean-squared error of a k-nearest-neighbor estimator for the average or distributional policy effect/treatment response.
翻译:当结果取决于社会或经济网络中各种因素是如何联系在一起时,我们建议一个新的非参数性因果关系推断框架,这种网络干扰可以描述关于治疗外溢、社会互动、社会学习、信息传播、疾病和金融传染、社会资本形成等方面的大量文献。我们的方法是首先说明一个代理人是如何在网络中使用其他媒介的配置和附近连接的,以路径距离来衡量。然后,通过将结果数据汇集到类似配置的代理人中来了解政策或治疗任务的影响。我们通过提出一个无实际效力的检验方法,说明政策无关性/无治疗效果的假设,并约束平均或分配政策效果/治疗反应的K-近邻估计的中度错误。