Attribution map visualization has arisen as one of the most effective techniques to understand the underlying inference process of Convolutional Neural Networks. In this task, the goal is to compute an score for each image pixel related with its contribution to the final network output. In this paper, we introduce Disentangled Masked Backpropagation (DMBP), a novel gradient-based method that leverages on the piecewise linear nature of ReLU networks to decompose the model function into different linear mappings. This decomposition aims to disentangle the positive, negative and nuisance factors from the attribution maps by learning a set of variables masking the contribution of each filter during back-propagation. A thorough evaluation over standard architectures (ResNet50 and VGG16) and benchmark datasets (PASCAL VOC and ImageNet) demonstrates that DMBP generates more visually interpretable attribution maps than previous approaches. Additionally, we quantitatively show that the maps produced by our method are more consistent with the true contribution of each pixel to the final network output.


翻译:归国图的可视化是了解进化神经网络基本推论过程的最有效方法之一。 在这项任务中,目标是计算每个图像像素的得分及其对最后网络输出的贡献。 在本文中,我们引入了分解的蒙面背对映法(DMBP),这是一种新的梯度法,它利用ReLU网络的片断线性线性将模型函数分解成不同的线性绘图。这种分解的目的是通过学习一套变量,掩盖每个过滤器在回向调整期间的贡献,将正数、负数和扰动因素与归国图相混淆。对标准结构(ResNet50和VGG16)和基准数据集(PASCAL VOC和图像Net)的彻底评估表明,DMBPS生成的可直观化属性地图比以往的方法要多。 此外,我们量化地表明,我们方法制作的地图与每个像素对最后网络输出的真正贡献更加一致。

0
下载
关闭预览

相关内容

反向传播一词严格来说仅指用于计算梯度的算法,而不是指如何使用梯度。但是该术语通常被宽松地指整个学习算法,包括如何使用梯度,例如通过随机梯度下降。反向传播将增量计算概括为增量规则中的增量规则,该规则是反向传播的单层版本,然后通过自动微分进行广义化,其中反向传播是反向累积(或“反向模式”)的特例。 在机器学习中,反向传播(backprop)是一种广泛用于训练前馈神经网络以进行监督学习的算法。对于其他人工神经网络(ANN)都存在反向传播的一般化–一类算法,通常称为“反向传播”。反向传播算法的工作原理是,通过链规则计算损失函数相对于每个权重的梯度,一次计算一层,从最后一层开始向后迭代,以避免链规则中中间项的冗余计算。
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
4+阅读 · 2019年1月14日
A General and Adaptive Robust Loss Function
Arxiv
7+阅读 · 2018年11月5日
Arxiv
7+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员