Write-optimized dictionaries are a class of cache-efficient data structures that buffer updates and apply them in batches to optimize the amortized cache misses per update. For example, a B^epsilon tree inserts updates as messages at the root. B^epsilon trees only move ("flush") messages when they have total size close to a cache line, optimizing the amount of work done per cache line written. Thus, recently-inserted messages reside at or near the root and are only flushed down the tree after a sufficient number of new messages arrive. Although this lazy approach works well for many operations, some types of updates do not complete until the update message reaches a leaf. For example, deferred queries and secure deletes must flush through all nodes along their root-to-leaf path before taking effect. What happens when we want to service a large number of (say) secure deletes as quickly as possible? Classic techniques leave us with an unsavory choice. On the one hand, we can group the delete messages using a write-optimized approach and move them down the tree lazily. But then many individual deletes may be left incomplete for an extended period of time, as their messages wait to be grouped with a sufficiently large number of related messages. On the other hand, we can ignore cache efficiency and perform a root-to-leaf flush for each delete. This begins work on individual deletes immediately, but harms system throughput. This paper investigates a new framework for efficiently flushing collections of messages from the root to their leaves in a write-optimized data structure. Our goal is to minimize the average time that messages reach the leaves. We give an algorithm that O(1)-approximates the optimal average completion time in this model. Along the way, we give a new 4-approximation algorithm for scheduling parallel tasks for weighted completion time with tree precedence constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员