Graph neural networks achieve high accuracy in link prediction by jointly leveraging graph topology and node attributes. Topology, however, is represented indirectly; state-of-the-art methods based on subgraph classification label nodes with distance to the target link, so that, although topological information is present, it is tempered by pooling. This makes it challenging to leverage features like loops and motifs associated with network formation mechanisms. We propose a link prediction algorithm based on a new pooling scheme called WalkPool. WalkPool combines the expressivity of topological heuristics with the feature-learning ability of neural networks. It summarizes a putative link by random walk probabilities of adjacent paths. Instead of extracting transition probabilities from the original graph, it computes the transition matrix of a "predictive" latent graph by applying attention to learned features; this may be interpreted as feature-sensitive topology fingerprinting. WalkPool can leverage unsupervised node features or be combined with GNNs and trained end-to-end. It outperforms state-of-the-art methods on all common link prediction benchmarks, both homophilic and heterophilic, with and without node attributes. Applying WalkPool to a set of unsupervised GNNs significantly improves prediction accuracy, suggesting that it may be used as a general-purpose graph pooling scheme.

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。

The prediction for information diffusion on social networks has great practical significance in marketing and public opinion control. It aims to predict the individuals who will potentially repost the message on the social network. One type of method is based on demographics, complex networks and other prior knowledge to establish an interpretable model to simulate and predict the propagation process, while the other type of method is completely data-driven and maps the nodes to a latent space for propagation prediction. Existing latent space design and embedding methods lack consideration for the intervene among users. In this paper, we propose an independent asymmetric embedding method to embed each individual into one latent influence space and multiple latent susceptibility spaces. Based on the similarity between information diffusion and heat diffusion phenomenon, the heat diffusion kernel is exploited in our model and establishes the embedding rules. Furthermore, our method captures the co-occurrence regulation of user combinations in cascades to improve the calculating effectiveness. The results of extensive experiments conducted on real-world datasets verify both the predictive accuracy and cost-effectiveness of our approach.

0
0
下载
预览

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

0
8
下载
预览

One of the central problems in machine learning is domain adaptation. Unlike past theoretical work, we consider a new model for subpopulation shift in the input or representation space. In this work, we propose a provably effective framework for domain adaptation based on label propagation. In our analysis, we use a simple but realistic ``expansion'' assumption, proposed in \citet{wei2021theoretical}. Using a teacher classifier trained on the source domain, our algorithm not only propagates to the target domain but also improves upon the teacher. By leveraging existing generalization bounds, we also obtain end-to-end finite-sample guarantees on the entire algorithm. In addition, we extend our theoretical framework to a more general setting of source-to-target transfer based on a third unlabeled dataset, which can be easily applied in various learning scenarios.

0
7
下载
预览

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, most existing GNN models have an implicit assumption of homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

0
3
下载
预览

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

0
21
下载
预览

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

0
28
下载
预览

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

0
10
下载
预览

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

0
17
下载
预览

Knowledge Graph Embedding (KGE) aims to represent entities and relations of knowledge graph in a low-dimensional continuous vector space. Recent works focus on incorporating structural knowledge with additional information, such as entity descriptions, relation paths and so on. However, common used additional information usually contains plenty of noise, which makes it hard to learn valuable representation. In this paper, we propose a new kind of additional information, called entity neighbors, which contain both semantic and topological features about given entity. We then develop a deep memory network model to encode information from neighbors. Employing a gating mechanism, representations of structure and neighbors are integrated into a joint representation. The experimental results show that our model outperforms existing KGE methods utilizing entity descriptions and achieves state-of-the-art metrics on 4 datasets.

0
3
下载
预览

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

0
23
下载
预览
小贴士
相关论文
Wenjin Xie,Xiaomeng Wang,Tao Jia
0+阅读 · 12月1日
Quan Wang,Haifeng Wang,Yajuan Lyu,Yong Zhu
8+阅读 · 5月18日
Tianle Cai,Ruiqi Gao,Jason D. Lee,Qi Lei
7+阅读 · 2月22日
Jiong Zhu,Ryan A. Rossi,Anup Rao,Tung Mai,Nedim Lipka,Nesreen K. Ahmed,Danai Koutra
3+阅读 · 2020年9月28日
Emily Alsentzer,Samuel G. Finlayson,Michelle M. Li,Marinka Zitnik
21+阅读 · 2020年6月19日
Hongwei Wang,Jure Leskovec
28+阅读 · 2020年2月17日
Zhen Zhang,Jiajun Bu,Martin Ester,Jianfeng Zhang,Chengwei Yao,Zhi Yu,Can Wang
10+阅读 · 2019年11月14日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
17+阅读 · 2019年1月3日
Knowledge Graph Embedding with Entity Neighbors and Deep Memory Network
Kai Wang,Yu Liu,Xiujuan Xu,Dan Lin
3+阅读 · 2018年8月11日
Muhan Zhang,Yixin Chen
23+阅读 · 2018年2月27日
相关资讯
Link prediction | 三篇SEAL相关工作小结
AINLP
5+阅读 · 2020年11月17日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
10+阅读 · 2020年6月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
9+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
22+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
Top