Author Name Disambiguation (AND) is the task of resolving which author mentions in a bibliographic database refer to the same real-world person, and is a critical ingredient of digital library applications such as search and citation analysis. While many AND algorithms have been proposed, comparing them is difficult because they often employ distinct features and are evaluated on different datasets. In response to this challenge, we present S2AND, a unified benchmark dataset for AND on scholarly papers, as well as an open-source reference model implementation. Our dataset harmonizes eight disparate AND datasets into a uniform format, with a single rich feature set drawn from the Semantic Scholar S2 database. Our evaluation suite for S2AND reports performance split by facets like publication year and number of papers, allowing researchers to track both global performance and measures of fairness across facet values. Our experiments show that because previous datasets tend to cover idiosyncratic and biased slices of the literature, algorithms trained to perform well on one on them may generalize poorly to others. By contrast, we show how training on a union of datasets in S2AND results in more robust models that perform well even on datasets unseen in training. The resulting AND model also substantially improves over the production algorithm in S2, reducing error by over 50% in terms of B^3 F1. We release our unified dataset, model code, trained models, and evaluation suite to the research community. https://github.com/allenai/S2AND/


翻译:作者姓名 Disambiguation (AND) 是解决任务的任务, 作者在书目数据库中提及, 作者在书目数据库中提及, 是同一个真实世界的人, 并且是数字图书馆应用程序( 如搜索和引证分析) 的关键组成部分。 虽然提出了许多和算法, 但比较它们是很困难的, 因为它们通常使用不同的特性, 并在不同的数据集中进行评估。 我们提出S2AND, 是一个统一的文献文献和学术论文的基准数据集, 以及一个开放源码参考模型的实施。 我们的数据集将八个不同的数据集和数据集统一成一个统一格式, 由Smantititic 学者S2 S2AND 数据库中抽出一个单一的丰富功能集。 我们的 S2AND 评估套件报告业绩按出版年份和文件数量等不同方面分列, 使研究人员能够跟踪全球业绩和衡量面值公平度的衡量标准。 我们的实验显示, 由于以前的数据集往往涵盖文献的特异和偏颇的切片段, 被训练的算法可能不及他人。 。 对比, 我们的关于S2AND 数据组合的模型评估组合的组合, 的模型, 的模型, 的模型的模型的模型的精确的模型, 的模型的模型的模型的模型的模型的模型比的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的精确性 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年2月15日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员