Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide great significant value in land-use land-cover classification (LULC). The developments in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal information for LULC classification. Moreover, the diverse disciplines of science, including remote sensing, have utilised tremendous improvements in image classification by CNNs with Transfer Learning. In this study, instead of training CNNs from scratch, we make use of transfer learning to fine-tune pre-trained networks a) VGG16 and b) Wide Residual Networks (WRNs), by replacing the final layer with additional layers, for LULC classification with EuroSAT dataset. Further, the performance and computational time were compared and optimized with techniques like early stopping, gradient clipping, adaptive learning rates and data augmentation. With the proposed approaches we were able to address the limited-data problem and achieved very good accuracy. Comprehensive comparisons over the EuroSAT RGB version benchmark have successfully established that our method outperforms the previous best-stated results, with a significant improvement over the accuracy from 98.57% to 99.17%.


翻译:以高空间分辨率图像高效实施遥感图像分类可以为土地使用土地覆盖分类(LULC)提供巨大价值。遥感和深层学习技术的发展促进了提取用于LULC分类的时空信息。此外,各种科学学科,包括遥感,利用了有线电视新闻网与转移学习系统在图像分类方面的巨大改进。在这项研究中,我们不是从零开始培训CNN,而是将学习转移到微调的预培训网络(a)VGG16和(b)大型残余网络(WWNN),办法是用额外的层取代LULC分类的最后层,用EuroSAT数据集取代LULC。此外,业绩和计算时间与早期停止、梯度剪裁、适应性学习率和数据增强等技术进行了比较和优化。通过拟议的方法,我们得以解决有限的数据问题,并取得了非常准确性。对欧洲SAT RGB版本基准的全面比较成功地确定,我们的方法比先前的最佳结果要高得多,从98.57%提高到99.17%。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
12+阅读 · 2019年3月14日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Deep Comparison: Relation Columns for Few-Shot Learning
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员