A unit disk graph $G$ on a given set $P$ of points in the plane is a geometric graph where an edge exists between two points $p,q \in P$ if and only if $|pq| \leq 1$. A spanning subgraph $G'$ of $G$ is a $k$-hop spanner if and only if for every edge $pq\in G$, there is a path between $p,q$ in $G'$ with at most $k$ edges. We obtain the following results for unit disk graphs in the plane. (I) Every $n$-vertex unit disk graph has a $5$-hop spanner with at most $5.5n$ edges. We analyze the family of spanners constructed by Biniaz (2020) and improve the upper bound on the number of edges from $9n$ to $5.5n$. (II) Using a new construction, we show that every $n$-vertex unit disk graph has a $3$-hop spanner with at most $11n$ edges. (III) Every $n$-vertex unit disk graph has a $2$-hop spanner with $O(n\log n)$ edges. This is the first nontrivial construction of $2$-hop spanners. (IV) For every sufficiently large positive integer $n$, there exists a set $P$ of $n$ points on a circle, such that every plane hop spanner on $P$ has hop stretch factor at least $4$. Previously, no lower bound greater than $2$ was known. (V) For every finite point set on a circle, there exists a plane (i.e., crossing-free) $4$-hop spanner. As such, this provides a tight bound for points on a circle. (VI) The maximum degree of $k$-hop spanners cannot be bounded from above by a function of $k$ for any positive integer $k$.


翻译:一张单位磁盘图 $G$, 在给定的固定的平方美元点数中, 一张单位磁盘图是一张几何图, 平方美元之间有两点的边距, 如果而且只有$+pq = leq 1美元, 才会有两点之间的边距。 一个横跨的子盘G$$$G$是美元, 如果对于每个边端$pq美元, 平方美元, 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方圆。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
82+阅读 · 2020年12月5日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
29+阅读 · 2020年4月15日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
26+阅读 · 2020年4月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员