Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension $d$, if the Hessian is given as a sum of $m$ rank-one matrices, using $O(dm^2)$ precomputation, $O(dm)$ cost for computing the IHVP, and query cost $O(m)$ for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost $O(dm + m^2)$ for computing the IHVP and $O(dm + m^3)$ for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [10] and [18].


翻译:有效接近损失函数的本地曲线信息( IHVP) 是优化和压缩深层神经网络的关键工具。 然而, 大约二阶信息的大多数现有方法都具有高计算或存储成本, 这可能会限制其实用性。 在这项工作中, 我们调查了用于估算逆向赫西西亚矢量产品( IHVP) 的无矩阵、 线性时间方法, 当赫西亚人可以比近为一级矩阵的总和时, 正如经验化渔业矩阵对赫斯亚人的典型快速缩略缩缩( dm) 一样。 我们提议两种新的算法, 作为称为 M- FAC 的框架的一部分: 第一种算法是针对网络压缩的, 并且可以按尺寸计算 IHVP PLO 的平价值, 使用 $( mm&2) 的预估算, 用于计算 IHVP 的第二位值成本, 以及 将我们想要从 Heserian 的单个元素的平流的平流- 平流- 的平流成本 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员