Even in a carefully designed randomized trial, outcomes for some study participants can be missing, or more precisely, ill-defined, because participants had died prior to date of outcome collection. This problem, known as truncation by death, means that the treated and untreated are no longer balanced with respect to covariates determining survival. To overcome this problem, researchers often utilize principal stratification and focus on the Survivor Average Causal Effect (SACE). The SACE is the average causal effect among the subpopulation that will survive regardless of treatment status. In this paper, we present a new approach based on matching for SACE identification and estimation. We provide an identification result for the SACE that motivates the use of matching to restore the balance among the survivors. We discuss various practical issues, including the choice of distance measures, possibility of matching with replacement, post-matching crude and model-based SACE estimators, and non-parametric tests. Our simulation results demonstrate the flexibility and advantages of our approach. Because the cross-world assumptions needed for SACE identification can be too strong and are unfalsifiable, we also present sensitivity analysis techniques and illustrate their use in real data analysis. Finally, a recent alternative for SACE that does not demand cross-world unfalsifiable assumptions targets the conditional separable effects. We show how our approach can also be utilized to estimate these causal effects.


翻译:即使在精心设计的随机试验中,某些研究参与者的结果也可能丢失,或者更确切地说,定义不准确,因为参与者在成果收集日期之前死亡,这个问题被称为死亡脱节,这意味着治疗和未经治疗的问题不再平衡于确定生存的共差。为了解决这一问题,研究人员经常使用主要的分层和关注幸存者平均原因效果(SACE)。SACE是无论治疗状况如何生存的亚群体的平均因果效应。在本文中,我们提出了一种基于匹配SACE识别和估算的新办法。我们为SACE提供了一种识别结果,鼓励使用匹配来恢复幸存者之间的平衡。我们讨论了各种实际问题,包括选择距离措施、与替代措施相匹配的可能性、后相配的原油和基于模型的SACE平均原因估计器(SACE)和非参数。我们的模拟结果显示了我们方法的灵活性和优势。由于SACE识别所需的跨世界假设可能太强,且不可靠。我们为SACE提供了一种识别和估算结果,我们为SACE提供了一种识别结果,我们提出一种识别结果的结果,鼓励使用匹配以恢复幸存者之间的平衡。我们还提出了一种敏感度分析方法,并展示了我们如何使用这些精确的精确的假设。我们如何使用这些假设。我们使用这些模型分析方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
6+阅读 · 2021年6月4日
Arxiv
24+阅读 · 2020年3月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
6+阅读 · 2021年6月4日
Arxiv
24+阅读 · 2020年3月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Top
微信扫码咨询专知VIP会员