Reduced-precision and variable-precision multiply-accumulate (MAC) operations provide opportunities to significantly improve energy efficiency and throughput of DNN accelerators with no/limited algorithmic performance loss, paving a way towards deploying AI applications on resource-constraint edge devices. Accordingly, various precision-scalable MAC array (PSMA) architectures were recently proposed. However, it is difficult to make a fair comparison between those alternatives, as each proposed PSMA is demonstrated in different systems with different technologies. This work aims to provide a clear view on the design space of PSMA and offer insights for selecting the optimal architectures based on designers' needs. First, we introduce a precision-enhanced for-loop representation for DNN dataflows. Next, we use this new representation towards a comprehensive PSMA taxonomy, capable to systematically cover most prominent state-of-the-art PSMAs, as well as uncover new PSMA architectures. Following that, we build a highly parameterized PSMA template that can be design-time configured into a huge subset of the design space spanned by the taxonomy. This allows to fairly and thoroughly benchmark 72 different PSMA architectures. We perform such studies in 28nm technology targeting run-time precision scalability from 8 to 2 bits, operating at 200 MHz and 1 GHz. Analyzing resulting energy efficiency and area breakdowns reveals key design guidelines for PSMA architectures.


翻译:降低精确度和可变精确度乘积(MAC)操作为大幅提高节能和DNN加速器(无/有限的算法性性能损失)的吞吐量提供了机会,为在资源限制边缘设备上部署AI应用程序铺平了道路,因此,最近提出了各种精确度可缩放的MAC阵列结构,然而,很难对这些替代品进行公平的比较,因为每个拟议的PSMA都在不同技术不同的系统中展示。这项工作旨在为PSMA的设计空间提供一个清晰的视野,并为根据设计者的需求选择最佳结构提供洞察。首先,我们为DNNN数据流引入了精确加固的Loop代表。接下来,我们利用这种新的代表面来建立一个全面的PSMA分类系统,能够系统地覆盖最突出的状态的PSMA,并发现新的PSMA结构。之后,我们建立了一个高度参数化的PSMA模板,可以根据设计的时间配置为基于设计者需要的最佳结构的BBE-road-loadal 结构,我们通过税制式的SMA系统进行这样的系统运行,从而进行这样的系统化地标定出第2号的地理空间结构。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2020年12月22日
专知会员服务
39+阅读 · 2020年9月6日
Python图像处理,366页pdf,Image Operators Image Processing in Python
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Graphs as Tools to Improve Deep Learning Methods
Arxiv
0+阅读 · 2021年10月8日
Arxiv
103+阅读 · 2021年6月8日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员