Random walks (RWs) are fundamental stochastic processes with applications across physics, computer science, and information processing. A recent extension, the laser chaos decision-maker, employs chaotic time series from semiconductor lasers to solve multi-armed bandit (MAB) problems at ultrafast speeds, and its threshold adjustment mechanism has been modeled as an RW. However, previous analyses assumed complete memory preservation ($\alpha = 1$), overlooking the role of partial memory in balancing exploration and exploitation. In this paper, we introduce the Antlion Random Walk (ARW), defined by $X_t = \alpha X_{t-1} + \xi_t$ with $\alpha \in [0,1]$ and Rademacher-distributed increments $(\xi_t)$, which describes a walker pulled back toward the origin before each step. We show that varying $\alpha$ significantly alters ARW dynamics, yielding distributions that range from uniform-like to normal-like. Through mathematical and numerical analyses, we investigate expectation, variance, reachability, positive-side residence time, and distributional similarity. Our results place ARWs within the framework of autoregressive (AR(1)) processes while highlighting distinct non-Gaussian features, thereby offering new theoretical insights into memory-aware stochastic modeling of decision-making systems.


翻译:随机游走(RW)是一种基础随机过程,在物理学、计算机科学与信息处理领域具有广泛应用。近期提出的激光混沌决策器利用半导体激光器产生的混沌时间序列以超高速解决多臂老虎机(MAB)问题,其阈值调整机制已被建模为随机游走。然而,先前分析均假设完全记忆保持($\alpha = 1$),忽略了部分记忆在平衡探索与利用中的作用。本文提出蚁狮随机游走(ARW),其定义为 $X_t = \alpha X_{t-1} + \xi_t$,其中 $\alpha \in [0,1]$ 且增量 $(\xi_t)$ 服从拉德马赫分布,该模型描述了游走者在每步前被拉回原点的运动特性。研究表明,改变 $\alpha$ 值会显著影响ARW的动力学行为,产生从类均匀分布到类正态分布的多种分布形态。通过数学分析与数值模拟,我们系统研究了ARW的期望、方差、可达性、正侧驻留时间及分布相似性。研究结果将ARW纳入自回归(AR(1))过程的理论框架,同时揭示了其独特的非高斯特征,从而为决策系统的记忆感知随机建模提供了新的理论见解。

0
下载
关闭预览

相关内容

在数学中,随机漫步是一种数学对象,称为随机过程或随机过程,它描述的路径由在某些数学空间(例如整数)上的一系列随机步骤组成。随机行走等是指基于过去的表现,无法预测将来的发展步骤和方向。核心概念是指任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律 ,接近于布朗运动,是布朗运动理想的数学状态,现阶段主要应用于互联网链接分析及金融股票市场中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月28日
Arxiv
103+阅读 · 2021年6月8日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员