Balancing resource efficiency and fairness is critical in networked systems that support modern learning applications. We introduce the Fair Minimum Labeling (FML) problem: the task of designing a minimum-cost temporal edge activation plan that ensures each group of nodes in a network has sufficient access to a designated target set, according to specified coverage requirements. FML captures key trade-offs in systems where edge activations incur resource costs and equitable access is essential, such as distributed data collection, update dissemination in edge-cloud systems, and fair service restoration in critical infrastructure. We show that FML is NP-hard and $\Omega(\log |V|)$-hard to approximate, and we present probabilistic approximation algorithms that match this bound, achieving the best possible guarantee for the activation cost. We demonstrate the practical utility of FML in a fair multi-source data aggregation task for training a shared model. Empirical results show that FML enforces group-level fairness with substantially lower activation cost than baseline heuristics, underscoring its potential for building resource-efficient, equitable temporal reachability in learning-integrated networks.
翻译:暂无翻译