Monocular visual odometry is a key technology in various autonomous systems. Traditional feature-based methods suffer from failures due to poor lighting, insufficient texture, and large motions. In contrast, recent learning-based dense SLAM methods exploit iterative dense bundle adjustment to address such failure cases, and achieve robust and accurate localization in a wide variety of real environments, without depending on domain-specific supervision. However, despite its potential, the methods still struggle with scenarios involving large motion and object dynamics. In this study, we diagnose key weaknesses in a popular learning-based dense SLAM model (DROID-SLAM) by analyzing major failure cases on outdoor benchmarks and exposing various shortcomings of its optimization process. We then propose the use of self-supervised priors leveraging a frozen large-scale pre-trained monocular depth estimator to initialize the dense bundle adjustment process, leading to robust visual odometry without the need to fine-tune the SLAM backbone. Despite its simplicity, the proposed method demonstrates significant improvements on KITTI odometry, as well as the challenging DDAD benchmark.
翻译:暂无翻译