Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangulation for which Bose and Morin [Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004] showed that there exists an online routing algorithm that is $O(1)$-competitive. However, a Delaunay triangulation can have $\Omega(n)$ vertex degree and a total weight that is a linear factor greater than the weight of a minimum spanning tree. We show a simple construction, given a set $V$ of $n$ points in the Euclidean plane, of a planar geometric graph on $V$ that has small weight (within a constant factor of the weight of a minimum spanning tree on $V$), constant degree, and that admits a local routing strategy that is $O(1)$-competitive. Moreover, the technique used to bound the weight works generally for any planar geometric graph whilst preserving the admission of an $O(1)$-competitive routing strategy.


翻译:平板嵌入图中的在线路线是若干领域的核心,并在文献中进行了广泛研究。对于大多数平板图来说,不存在O(1)美元(n)的竞争性在线路线算法,一个显著的例外是存在Bose和Morin[三角图中的在线路线]的Delaunay三角图。SIAM《电子学杂志》,33(4):937-951,2004年]显示,存在着一种O(1)美元的在线路线算法,具有竞争力。然而,对于大多数平板图来说,Delaunay三角算法可以具有美元/Omega(n)的垂直度和总重量,其线性系数大于最小横幅树的重量。我们展示了一个简单的构造,给Eucloidean平面上设定了美元为美元(treal $)的固定数字图,该图的重量小(在最小宽度树的重量比值为$(1美元/美元)的固定系数内),持续度,并承认当地测线战略是1美元(n)- 竞争力。此外,我们展示了一种技术约束性平面平面战略,用以维持了平面平面的平面平面平面平面平面平面平面平面平面平面的平面图。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
83+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员