Though recent works have developed methods that can generate estimates (or imputations)of the missing entries in a dataset to facilitate downstream analysis, most depend onassumptions that may not align with real-world applications and could suffer from poorperformance in subsequent tasks such as classification. This is particularly true if the datahave large missingness rates or a small sample size. More importantly, the imputationerror could be propagated into the prediction step that follows, which may constrain thecapabilities of the prediction model. In this work, we introduce the gradient importancelearning (GIL) method to train multilayer perceptrons (MLPs) and long short-term memo-ries (LSTMs) todirectlyperform inference from inputs containing missing valueswithoutimputation. Specifically, we employ reinforcement learning (RL) to adjust the gradientsused to train these models via back-propagation. This allows the model to exploit theunderlying information behindmissingness patterns. We test the approach on real-worldtime-series (i.e., MIMIC-III), tabular data obtained from an eye clinic, and a standarddataset (i.e., MNIST), where ourimputation-freepredictions outperform the traditionaltwo-stepimputation-based predictions using state-of-the-art imputation method


翻译:尽管最近的工作已经开发出一些方法,可以对数据集中缺失的条目进行估计(或估算),以便利下游分析,但多数取决于可能与现实世界应用不相符的假设和在分类等后续任务中可能表现不佳的假设。如果数据缺少率高或抽样规模小,则情况尤其如此。更重要的是,推算器可以传播到随后的预测步骤中,这可能限制预测模型的能力。在这项工作中,我们采用梯度重要性学习方法来培训多层透视器(MLPs)和长期短期回忆录(LSTMs),以便从含有缺省值的投入中直接得出准确的推论。具体地说,我们采用强化学习(RL)来调整用于通过背算法来训练这些模型的梯度。这可以使模型利用基于预测模式的信息误差模式。我们测试了现实世界时间序列(i.i.MIC-III)的方法,用于培训多层透视器(MLTMs),以及长期的短期回忆录(LTMs)方法,从含有缺省值的投入中直接推断。我们使用自由诊所的列表数据,并采用传统数据(MISIMF),并采用标准数据(s-steximeximation-stitation-stitutision-stations),从而利用了我们的数据。

0
下载
关闭预览

相关内容

深度前馈网络(deep feedforward network),也叫做前馈神经网络(feedforward neural network)或者多层感知机(multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数 f^∗ 。例如,对于分类器,y = f^∗ (x)将输入x映射到一个类别y。前馈网络定义了一个映射y = f (x; θ),并且学习参数θ的值使它能够得到最佳的函数近似。
专知会员服务
53+阅读 · 2020年10月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
58+阅读 · 2019年8月26日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2019年5月31日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Arxiv
6+阅读 · 2018年12月10日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2019年5月31日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Arxiv
6+阅读 · 2018年12月10日
Learning to Importance Sample in Primary Sample Space
Top
微信扫码咨询专知VIP会员